(+) 188 1699 6168 hongrunplastics.com

Petrothene

lyondellbasell

Linear Low Density Polyethylene Film Extrusion Grade Melt Index: 1.0 Density: 0.918

The <i>Petrothene</i> GA501 series of resins is pelletized liner low density polyethylene selected by customers for film extrusion applications that require excellent drawdown and toughness. These resins have excellent puncture resistance, elongation and heat seal strength. Typical applications include heavy duty shipping sacks, trash can liners, commercial and industrial packaging, as well as food and consumer packaging. GA501 is available without additives or fully formulated with slip and antiblock additives.								
The GA501 series resins meet the requirements of the Food and Drug Administration, 21 CFR 177.1520. This regulation allows the use of this olefin polymer in"articles or components or articles intended for use in contact with food" Specific limitations or conditions of use may apply. Contact your Equistar product safety representative for more information.								
Using proper te production rate	chniques, thes s. Specific rec	e products ommenda	s can readily tions for type	be drawn l of resin ar	below 0.90 nd extrusio) mils at optim	num can be	
Property Melt Index (190/2.16) Base Resin Density Vicat Softening Point		Nominal Value 1.0 0.918 107		Units g/10 min g/cc °C	ASTM Test M D1238 D1505 D1525	Test Method D1238 D1505		
Film Gauge Blow-up Ratio Haze Gloss, 45° Dart Drop Impact Strength, F ₅₀ Tensile Strength @ Break, MD (TD) Elongation @ Break, MD (TD) 1% Secant Modulus, MD (TD) Elmendorf Tear, MD (TD)			1.0 2.5:1 20 40 100 6,600 (4,700) 580 (725) 27,000 (28,000) 125 (330)		mil % g psi % psi g	D1003 D523 D1709/ D882 D882 D638 D1922	D523 D1709/A D882 D882 D638	
Product Slip (ppm) Antiblock (ppm) PPA Product Slip (ppm) Antiblock (ppm) PPA	GA501020 None None None GA501150X01 None None None	None 7,000 None	21 GA5010 1,350 7,000 None	900 5,5) 00	GA501152 600 10,000 Present	GA501154 900 5,500 Present	
	customers for fi resins have exc include heavy of as food and cor and antiblock a The GA501 ser 177.1520. This articles intende Contact your Ed Typical extrusion Using proper te production rates made only whe Property Melt Index (1900 Base Resin De Vicat Softening Film Gauge Blow-up Ratio Haze Gloss, 45° Dart Drop Impa Tensile Strengt Elongation @ E 1% Secant Mod Elmendorf Tear Product Slip (ppm) Antiblock (ppm) Product Slip (ppm) Antiblock (ppm)	customers for film extrusion arresins have excellent puncture include heavy duty shipping sas food and consumer package and antiblock additives. The GA501 series resins meet 177.1520. This regulation allo articles intended for use in conditions a Using proper techniques, these production rates. Specific recomade only when the end use, Property Melt Index (190/2.16) Base Resin Density Vicat Softening Point Film Gauge Blow-up Ratio Haze Gloss, 45° Dart Drop Impact Strength, F ₅ Tensile Strength @ Break, MD (TD) 1% Secant Modulus, MD (TD) Elongation @ Break, MD (TD) Slip (ppm) None Antiblock (ppm) None Product GA501150X01 Slip (ppm) None Product GA501150X01	customers for film extrusion applications resins have excellent puncture resistand include heavy duty shipping sacks, trash as food and consumer packaging. GA50 and antiblock additives. The GA501 series resins meet the requi 177.1520. This regulation allows the use articles intended for use in contact with Contact your Equistar product safety rep Typical extrusion conditions are 400°- 4 Using proper techniques, these products production rates. Specific recommenda made only when the end use, required p Property Melt Index (190/2.16) Base Resin Density Vicat Softening Point Film Gauge Blow-up Ratio Haze Gloss, 45° Dart Drop Impact Strength, F ₅₀ Tensile Strength @ Break, MD (TD) Elongation @ Break, MD (TD) Elmendorf Tear, MD (TD) Elmendorf Tear, MD (TD) Slip (ppm) Antiblock (ppm) None Antiblock (ppm) None Antiblock (ppm) None	customers for film extrusion applications that require resins have excellent puncture resistance, elongatio include heavy duty shipping sacks, trash can liners, as food and consumer packaging. GA501 is available and antiblock additives. The GA501 series resins meet the requirements of t 177.1520. This regulation allows the use of this olefi articles intended for use in contact with food" Spe Contact your Equistar product safety representative Typical extrusion conditions are 400°- 450°F melt te Using proper techniques, these products can readily production rates. Specific recommendations for type made only when the end use, required properties an Property Melt Index (190/2.16) 1.0 Base Resin Density 0.918 Vicat Softening Point 107 Film Gauge 1.0 Blow-up Ratio 2.5:1 Haze 20 Gloss, 45° 40 Dart Drop Impact Strength, F ₅₀ 100 Tensile Strength @ Break, MD (TD) 6,600 (4,70 Elongation @ Break, MD (TD) 580 (725) 1% Secant Modulus, MD (TD) 27,000 (28, Elmendorf Tear, MD (TD) 125 (330) Product GA501020 GA501021 GA5010 Slip (ppm) None 7,000 7,000 PPA None None None 1,350 Antiblock (ppm) None None None None None	customers for film extrusion applications that require excellent of resins have excellent puncture resistance, elongation and heat include heavy duty shipping sacks, trash can liners, commercia as food and consumer packaging. GA501 is available without a and antiblock additives. The GA501 series resins meet the requirements of the Food an 177.1520. This regulation allows the use of this olefin polymer i articles intended for use in contact with food" Specific limitatic Contact your Equistar product safety representative for more in Typical extrusion conditions are 400°- 450°F melt temperature a Using proper techniques, these products can readily be drawn I production rates. Specific recommendations for type of resin an made only when the end use, required properties and processin Property Nominal Value Melt Index (190/2.16) 1.0 Base Resin Density 0.918 Vicat Softening Point 107 Film Gauge 1.0 Blow-up Ratio 2.5:1 Haze 20 Gloss, 45° 40 Dart Drop Impact Strength, F ₅₀ 100 Tensile Strength @ Break, MD (TD) 580 (725) 1% Secant Modulus, MD (TD) 580 (725) 1% Secant Modulus, MD (TD) 27,000 (28,000) Elmendorf Tear, MD (TD) 125 (330) Product GA501150X01 Slip (ppm) None None None None None None None None	customers for film extrusion applications that require excellent drawdown resins have excellent puncture resistance, elongation and heat seal stren include heavy duty shipping sacks, trash can liners, commercial and indu as food and consumer packaging. GA501 is available without additives or and antiblock additives. The GA501 series resins meet the requirements of the Food and Drug Ac 177.1520. This regulation allows the use of this olefin polymer in"article articles intended for use in contact with food" Specific limitations or con Contact your Equistar product safety representative for more information. Typical extrusion conditions are 400°- 450°F melt temperature and a 1.5-Using proper techniques, these products can readily be drawn below 0.90 production rates. Specific recommendations for type of resin and extrusion made only when the end use, required properties and processing equipm Property Nominal Units Melt Index (190/2.16) 1.0 g/10 min Base Resin Density 0.918 g/cc Vicat Softening Point 107 °C Film Gauge 1.0 mil Blow-up Ratio 2.5:1 Haze 20 % Gloss, 45° 40 100 g Tom in Blow-up Ratio 2.5:1 Haze % Gloss, 45° 40 Dart Drop Impact Strength, F ₅₀ 100 g Tomoto (28,000) psi Elongation @ Break,	customers for film extrusion applications that require excellent drawdown and toughnes resins have excellent puncture resistance, elongation and heat seal strength. Typical a include heavy duty shipping sacks, trash can liners, commercial and industrial packagi as food and consumer packaging. GA501 is available without additives or fully formulat and antiblock additives. The GA501 series resins meet the requirements of the Food and Drug Administration, 177.1520. This regulation allows the use of this olefin polymer in" articles or compon articles intended for use in contact with food" Specific limitations or conditions of use Contact your Equistar product safety representative for more information. Typical extrusion conditions are 400°- 450°F melt temperature and a 1.5-3.0:1 blow-up Using proper techniques, these products can readily be drawn below 0.90 mils at optim production rates. Specific recommendations for type of resin and extrusion conditions made only when the end use, required properties and processing equipment are known Melt Index (190/2.16) 1.0 g/10 min D1238 Base Resin Density 0.918 g/cc D1505 Vicat Softening Point 107 °C D1525 Film Gauge 1.0 mil Blow-up Ratio 2.5:1 Haze 20 % D1003 Gloss, 45° 40 D523 Dart Drop Impact Strength, F ₅₀ 100 g D1709/ Tensile Strength @ Break, MD (TD) 560 (725) % D882 Elongation @ Break, MD (TD) 27,000 (28,000) psi D638 Elmendorf Tear, MD (TD) 27,000 (28,000) psi D638 Elmendorf Tear, MD (TD) 125 (330) g D1922 Product GA501020 GA501021 GA501022 GA501023 GA501152 Slip (ppm) None None None None None None Present Product GA501150X01 Slip (ppm) None None None None None Present	